

CONSERVATION & TRANSPORTATION OF FRESH WATER ALONG THE COASTAL REGION OF INDIA

(TWO way Flow to assist Better Flood Control)

(INITIAL INFRASTRUCTRE COST & MINIMAL TRANSPORTATION COST)

Dr. W.AMARNATH D.Sc.,

+91 9884098864 www.inveent2succeed.in email: invent2succeed@yahoo.com

PERENNIAL RIVERS

(Glacier Fed flows 365 days) GANGES & BRAHMAPUTRA

MAJOR PENINSULAR RIVERS

(Monsoon Fed – Seasonal) East Flowing: Mahanadi Godavari Krishna Cauvery

West Flowing: Narmada Tapti

MONSOON South West & North East

AVERAGE RAINFALL

In a year

Observation

Heavy rainfall in

South West Coastal Region

&

North Eastern States

CONVENTIONAL METHOD

Linking by Open Cut Canals

From Indo Gangetic Plains to South India (Cauvery)

Advantages:

Assists in Limited Flood Control Assists in Ground water recharge Additional Land for Cultivation Additional Surface Transportation Additional Drinking water Generation of Power down hill Benefits few states

CONVENTIONAL METHOD

Linking by Open Cut Canals

Indo Gangetic Plains to South India (Cauvery)

Disadvantages: Acquisition of Land Paying Compensation Relocation of habitats Inundation of wild life sanctuary Evaporation Loss Seepage Loss Extensive Usage of Electricity New Transmission lines & Sub stations Flows only ONE way IMPLEMENTATION TIME

TOPOGRAPHY MAP OF INDIA

SEA LEVEL - MAP OF INDIA

SEA LEVEL - MAP OF INDIA

Currents of Indian Ocean

Currents of Bay of Bengal & Arabian Sea

INNOVATIVE METHOD

Linking by GARLAND of TANKS

Bengal to Gujarat via Kanyakumari

Advantages:

NO Acquisition of Land

- **NO** Compensation
- **NO** Relocation of habitats
- **MINIMUM** Evaporation Loss
- MINIMUM Seepage Loss
- MINIMUM Usage of Electricity
- MINIMUM Transmission lines Flows TWO way – BETTER FLOOD CONTROL SHORT TIME IMPLEMENTATION BENEFITS NINE STATES & ONE UT.

ADDITIONAL WATER FOR IRRIGATION & DRINKING – 365 DAYS

INNOVATIVE METHOD

Linking by Garland of TANKS

Bengal to Gujarat via Kanyakumari

Disadvantages: Does not provide Surface Transport (Waterway)

Artist's View of Cellular TANKS with PIPES ON THE SEA FLOOR

Artist's View of Cellular TANKS with PIPES on sea floor & INFLOW / OUTFLOW CANAL (two way)

Artist's View of Cellular TANKS with PIPES and INFLOW / OUTFLOW CANAL (two way)

Mega Projects executed on Land & Sea

for wheat storage	
Height (each)	52 m
Internal diameter	7 m
Wall thickness	25 cm
Capacity in Tons	1,350
Construction Time	8 Months
High concrete surface	

Storage Silos

JAPAN

Tokyo's

Major Tourist Attraction

50 Meters Below Ground Level Extends 6.3 Km

SILOS 5

Height 65m Diameter 32m Below Surface 50m 1,00,000 CuM (each)

TANKS	
Height	25m
Length	177m
Width	78m
3,50,000 CuM	

G Cans – Japan's Underground drainage system – 2.6 B \$

Connected to 78 10 MW pumps that can pump up to 200 CuM of water per second

SILOS 5 #

Height65mDiameter32mBelow Surface50m

1,00,000 CuM (each)

TANKS	
Height	25m
Length	177m
Width	78m
3,50,000 CuM	

G Cans – Japan's Underground drainage system – 1993 - 1996

Connected to 78 - 10<u>MW</u> pumps that can pump up to 200 Cum of water per second (53,000 Gallons per second)

Height	65m
Diameter	s 32m
Below Sur	face 50m
1,00,000	CuM (each)

TANKS	
Height	25m
Length	177m
Width	78m
3,50,000 CuM	

Mechanism of Metropolitan Area Outer Underground Discharge Channel

G Cans – Japan's Underground drainage system – 1993 - 1996

Connected to 78 - 10<u>MW</u> pumps that can pump up to 200 Cum of water per second (53,000 Gallons per second)

Design of Under sea tunnel In English Channel

Two 25 feet Dia tubes For trains and One 16 feet Dia Service Tunnel 300 feet below sea level

Working Depth and Pressure

Suggested Pipes at 100 feet Below Sea Level - Pressure @ 3.9 atm

Chunnel at 250 feet Below Sea Level -

Comparison

Pressure @ 8.4 atm

Seiken at 790 feet Below Sea Level -

Pressure @ 24.8 atm

Existing Under Sea Rail Links

Euro Chunnel – Connecting France and England Seiken Tunnel – Connecting Honshu and Hokkaido

Proposed Under Sea Rail Links

Japan and South Korea China and United States of America

Proposed Under Sea Rail Links

Japan and South Korea China and United States of America

WORLD'S

TOP TEN TUNNELS

IN EXISTANCE

UNDER SEA TUNNELS IN EXISTANCE

1.	SEIKAN TUNNEL	53.9 k	۲m
2.	CHUNNEL TUNNEL	37.9	Km
3.	TOKYO BAY TUNNEL	15.0 k	۲m
4.	BOMLAFJORD TUNNE	L	7.8 Km
5.	EIKSUND TUNNEL 7.7	Km	2007
6.	N. CAPE TUNNEL 6.8	Km	1999
7.	SEVERN TUNNEL 3.6	Km	1886
8.	VARDO TUNNEL 2.9	Km	1982
9.	SYDNEY TUNNEL 2.8	Km	1992
10.	THAMES TUNNEL 0.4	Km	1843

.998	JAPAN
.994	ENGLAND / FRANCE
.997	JAPAN
.980	NORWAY
ORWAY	
ORWAY	
	ООМ
ORWAY	
USTRALIA	
NITED KING	DOM

Table top demo given at IIT - Rookee

www.invent2succeed.in

PROOF OF CONCEPT – NEW HORIZON COLLEGE OF ENGINEERING

www.invent2succeed.in

CONSERVATION & TRANSPORTATION

OF

FRESH WATER ALONG THE COASTAL REGION OF INDIA

(TWO way Flow to assist Better Flood Control) (INITIAL INFRASTRUCTRE COST & MINIMAL TRANSPORTATION COST)

THANK YOU

Dr. W.AMARNATH D.Sc.,

+91 9884098864 www.inveent2succeed.in email: invent2succeed@yahoo.com